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According to common beliefs, present expansion of Universe is result of Big Bang.
Quite popular idea is that this expansion had been preceded by compression with
subsequent Big Bounce.

We demonstrate that contrary to popular beliefs

gravitational four-fermion interaction

does not result in Big Bounce.



1. Interaction of fermions with gravity results, due to torsion, in four-fermion
interaction (Kibble; Rodichev; Perez, Rovelli; Freidel, Minic, Takeuchi)

Sff =
3

2
π G

γ2
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∫
d4x e
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ηIJAIAJ

− α

γ
ηIJ(V IAJ + AIV J) − α2 ηIJV IV J

]
.

This interaction, proportional to Newton constant G and to particle number
density squared n2, gets essential on the Planck scale only.



We need energy-momentum tensor (EMT) Tµν generated by this action. Metric
tensor enters this action via

√−g only (!), thus
1

2

√
−g Tµν =

δ

δgµν
Sff .

With identity
1√−g

∂
√−g
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= −1

2
gµν ,

we arrive at the following expression for EMT:

Tµν = −3π

2
G
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gµν[ηIJAIAJ +

α

γ
ηIJ (V IAJ + AIV J) − α2 ηIJV IV J].



Nonvanishing components of this expression, written in locally inertial frame, are
energy density T00 = ρff and pressure T11 = T22 = T33 = pff .
Thus, equation of state (EOS) is

ρff = − pff = − π

48
G

γ2

γ2 + 1
n2 [(3 − 11 ζ) − α2(60 − 28 ζ)] .

Here n is total density of fermions and antifermions, ζ = < σaσb > is average
value of product of corresponding σ-matrices, presumably universal for any a and
b. With large number of sorts of fermions and antifermions, we neglect here for
numerical reasons contributions of exchange and annihilation contributions, and
the fact that, if σa and σb refer to same particle, < σaσb >= 3.
After averaging over momenta orientations, P -odd contributions of V A to ρff

and p vanish.



At last, there are no reasons to expect that ζ = < σaσb > can survive under
the extreme conditions. Thus, EOS simplifies to

ρff = − pff = − π

16
G

γ2

γ2 + 1
n2 (1 − 20α2) .

From now on, energy density is rewritten as

ρff = Gn2ε,

with

ε = − π

16

γ2

γ2 + 1
(1 − 20α2) .



2. Common matter on the Planck scale is ultrarelativistic. Its energy density is

ρ = νn4/3,

ν is numerical factor, n1/3 is typical energy per particle.
Another factor n is total density of ultrarelativistic particles and antiparticles,
fermions and bosons, contributing to this density. This factor exceeds fermion
density n entering above four-fermion expressions. This difference is absorbed
here by factor ν. In corresponding EMT, due to isotropy,

T0m = Tm0 = 0, T11 = T22 = T33.

Since T µ
µ = 0,

T µ
ν = ρ diag(1, −1/3, −1/3, −1/3),

or Tµν = ρ diag(1, 1/3, 1/3, 1/3) ; thus p = ρ/3.



3. We assume that, even when EOS reduces to this one, Universe is homogeneous
and isotropic, and is described by Friedmann-Lemaitre-Robertson-Walker (FLRW)
metric

ds2 = dt2 − a(t)2[ dr2 + f(r)(dθ2 + sin2 θ dφ2)];

f(r) depends on topology of Universe as a whole:

f(r) = r2, sin2 r, sinh2 r

for spatial flat, closed, and open Universe, respectively.



Einstein equations for FLRW metric reduce now to

(
ȧ

a

)2

+
k

a2
=

8πG

3
(ρff + ρ) ,

ä

a
=

8πG

3
(ρff − ρ) ;

here k equals 0, 1, and −1 for spatial flat, closed, and open Universe, respectively.
Observational data strongly favor the idea that our Universe is spatial flat, i.e.
that k = 0. Above equations are supplemented by covariant continuity equation:

ρ̇ff + ρ̇ + 4
ȧ

a
ρ = 0 .



4. Solution of FLRW equations. With substitution

a(t) = a0 exp(f(t)) , (1)

continuity equation is satisfied identically. Two other equations result in

8πG

3
(ρff + ρ) = ḟ 2,

8πG

3
ρ = −1

2
f̈ .

Differentiating first of them and combining with second, we arrive at

f = − 3

4ν
G ε n2/3 − 1

3
ln n , ε = − π

16
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γ2 + 1
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and thus

a(t) = a0 exp(f(t)) ∼ n−1/3 exp{− 3

4 ν
G ε n2/3}.

1) ε > 0. In compression, at first, both factors shrink to zero. Rewrite previous
equations as

ȧ = −
√

8πG

3
a

√
ρff + ρ, ä =

8πG

3
a (ρff − ρ).

At first, when ρff ¿ ρ, both ȧ and ä are negative, Universe shrinks with
acceleration. At ρff = ρ acceleration ä changes sign, while ȧ remains negative,
and compression of Universe decelerates.



Rather tedious calculations demonstrate that
1. it takes finite time for a to shrink to zero,
2. ȧ and ä also vanish at the same moment.

Repulsive GFFI does not stop the collapse, but only reduces its rate.
The asymptotic behavior of a(t) is

a(t) ∼ (t1 − t) exp
(

− 9 ε2G

128πν3

1

(t1 − t)2

)
,

t1 is the moment of the collapse for ε > 0.
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Figure 1: Dependence of scale factor on time for compression



For negative ε, situation is different. Here right-hand side of relation

a(t) ∼ 1√
|ξ(t)| e

3
4|ξ(t)|, ξ(t) =

ρff

ρ
=

G ε

ν
n2/3.

has minimum at |ξm| = 2/3, i.e., a(t) cannot decrease further. However, the
compression rate ȧ at this point does not vanish and remains finite. In a sense,
the situation here resembles that in the standard cosmology with ultrarelativistic
particles: therein a(t) ∼ √

t0 − t → 0 for t → t0 (t0 is the moment of the
collapse in this case), though at this point ȧ is not finite, but tends to infinity.
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Figure 2: Dependence of scale factor on time for expansion



Gravitational four-fermion interaction

does not result in Big Bounce!


