Long time dynamical evolution of highly elliptical satellites orbits

Eduard Kuznetsov Polina Zakharova

Astronomical Observatory
Ural Federal University
Journees 2014
22-24 September 2014, Saint-Petersburg

Outline

(9) Introduction
(2) Analytical approximation

- Critical arguments and their frequencies
- p:q resonances
(3) Numerical simulation
- Numerical model
- Dynamical evolution in region near the high-order resonance

4 Summary

- Results

Astronomical Observatory of the Ural Federal University

Orbital evolution of HEO objects is studied by

- both a positional observation method (SBG telescope)
- and theoretical methods (this work)
- analytical
- numerical

Motivation

Long-term dynamical evolution near HEO

- Safety of active satellites
- Secular perturbations of semi-major axes
- Atmospheric drag
- The Poynting-Robertson effect
- Long-term evolution of eccentricities and inclinations due to the Lidov-Kozai resonance
- Passage through high-order resonance zones
- Formation of stochastic trajectories

Methods

Analytical

- Resonant semi-major axis values
- Critical arguments

Numerical

- Positions and sizes of high-order resonance zones
- Estimation of semi-major axes secular perturbations
- Estimation of integrated autocorrelation function

Outline

Introduction

(2) Analytical approximation

- Critical arguments and their frequencies
- p:q resonances
(3) Numerical simulation
- Numerical model
- Dynamical evolution in region near the high-order resonanceSummary
- Results

Critical arguments (Allan 1967)

$$
\begin{aligned}
& \Phi_{1}=p(M+\Omega+g)-q \omega t=\nu_{1} t \\
& \Phi_{2}=p(M+g)+q(\Omega-\omega t)=\nu_{2} t \\
& \Phi_{3}=p M+q(g+\Omega-\omega t)=\nu_{3} t
\end{aligned}
$$

Frequencies of the critical arguments

$$
\begin{aligned}
& \nu_{1}=p\left(n_{M}+n_{\Omega}+n_{g}\right)-q \omega \\
& \nu_{2}=p\left(n_{M}+n_{g}\right)+q\left(n_{\Omega}-\omega\right) \\
& \nu_{3}=p n_{M}+q\left(n_{g}+n_{\Omega}-\omega\right)
\end{aligned}
$$

M, Ω, g are angular elements, n_{M}, n_{Ω}, n_{g} are mean motions, ω is the angular velocity of the Earth
p, q are integers

Outline

(1) Introduction

(2) Analytical approximation

- Critical arguments and their frequencies
- p:q resonances
(3) Numerical simulation
- Numerical model
- Dynamical evolution in region near the high-order resonance

4) Summary

- Results

Types of resonances

n-resonance

$$
\nu_{1} \approx 0
$$

$p: q$ resonance between the satellite's mean motion n_{M} and the Earth's angular velocity ω

i-resonance

$$
\nu_{2} \approx 0
$$

The position of the ascending node of the orbit repeats periodically in a rotating coordinate system

e-resonance

$$
\nu_{3} \approx 0
$$

The position of the line of apsides of the orbit repeats periodically in a rotating coordinate system

17 high-order resonance relations $p: q$

Resonant semi-major axis values

$$
\begin{gathered}
e=0.65 \text { and } \\
i=63.4^{\circ} \\
16 \leqslant|p| \leqslant 25 \\
33 \leqslant|q| \leqslant 49
\end{gathered}
$$

Order of resonance:
$49 \leqslant|p|+|q| \leqslant 74$

Outline

(1)
 Introduction

Analytical approximation

- Critical arguments and their frequencies
- p:q resonances
(3) Numerical simulation
- Numerical model
- Dynamical evolution in region near the high-order resonance
(4) Summary
- Results

Numerical Model of Artificial Earth Satellites Motion (Bordovitsyna et al. 2007)

Software developer

- Research Institute of Applied Mathematics and Mechanics of Tomsk State University

Integrator

- Everhart's method of the $19^{\text {th }}$ order

Interval

- 24 years

The model of perturbing forces (Kuznetsov and Kudryavtsev 2009)

- the Earth's gravitational field (EGM96, harmonics up to the $27^{\text {th }}$ order and degree inclusive)
- the attraction of the Moon and the Sun
- the tides in the Earth's body
- the direct radiation pressure, taking into account the shadow of the Earth (the reflection coefficient $k=1.44$)
- the Poynting-Robertson effect
- the atmospheric drag

Initial conditions

High-elliptical orbits

- a_{0} are consistent with resonant conditions arisen from the analytical approximation
- $e_{0}=0.65$
- Critical inclination $i_{0}=63.4^{\circ}$
- $g_{0}=270^{\circ}$
- $\Omega_{0}=0^{\circ}, 90^{\circ}, 180^{\circ}$, and 270°
- Ω_{0} coincide with initial values of solar angle $\varphi_{0}=\Omega_{0}+g_{0}=270^{\circ}, 0^{\circ}, 90^{\circ}$, and 180°
- $A M R=0.02,0.2$, and $2 \mathrm{~m}^{2} / \mathrm{kg}$

Outline

Introduction

Analytical approximation

- Critical arguments and their frequencies
- p:q resonances
(3) Numerical simulation
- Numerical model
- Dynamical evolution in region near the high-order resonanceSummary
- Results

Dynamical evolution in region near the high-order resonance

22:45 resonance region

Dynamical evolution in region near the high-order resonance

Evolution of the semi-major axis a near the 22:45 resonance region

$a_{0}=26162 \mathrm{~km}, \varphi_{0}=0^{\circ}, \mathrm{AMR}$ is $0.02 \mathrm{~m}^{2} / \mathrm{kg}$

Dynamical evolution in region near the high-order resonance

Evolution of the eccentricity e and argument of the pericenter g near the 22:45 resonance region

$a_{0}=26162 \mathrm{~km}, \mathrm{AMR}$ is $0.02 \mathrm{~m}^{2} / \mathrm{kg}$

$$
\begin{gathered}
\varphi_{0}=0^{\circ} \\
\varphi_{0}=90^{\circ} \\
\varphi_{0}=180^{\circ} \\
\varphi_{0}=270^{\circ}
\end{gathered}
$$

Dynamical evolution in region near the high-order resonance

Evolution of the inclination i near the 22:45 resonance region

$a_{0}=26162 \mathrm{~km}, \mathrm{AMR}$ is $0.02 \mathrm{~m}^{2} / \mathrm{kg}$

$$
\begin{aligned}
& \varphi_{0}=0^{\circ} \\
& \varphi_{0}=90^{\circ} \\
& \varphi_{0}=180^{\circ} \\
& \varphi_{0}=270^{\circ}
\end{aligned}
$$

Dynamical evolution in region near the high-order resonance

Evolution of the critical argument Φ_{1} near the 22:45 resonance region

$a_{0}=26162 \mathrm{~km}, \varphi_{0}=90^{\circ}, \mathrm{AMR}$ is $0.02 \mathrm{~m}^{2} / \mathrm{kg}$

Dynamical evolution in region near the high-order resonance

Evolution of the critical argument Φ_{2} near the 22:45 resonance region

$a_{0}=26162 \mathrm{~km}, \varphi_{0}=0^{\circ}, \mathrm{AMR}$ is $0.02 \mathrm{~m}^{2} / \mathrm{kg}$

Dynamical evolution in region near the high-order resonance

Evolution of the critical argument Φ_{3} near the 22:45 resonance region

$a_{0}=26162 \mathrm{~km}, \varphi_{0}=0^{\circ}, \mathrm{AMR}$ is $0.02 \mathrm{~m}^{2} / \mathrm{kg}$

Dynamical evolution in region near the high-order resonance

Evolution of the semi-major axis a near the 22:45 resonance region

$a_{0}=26162 \mathrm{~km}, \varphi_{0}=0^{\circ}$, AMR is $2 \mathrm{~m}^{2} / \mathrm{kg}$

Evolution of the critical argument Φ_{1} near the 22:45 resonance region

$a_{0}=26162 \mathrm{~km}, \varphi_{0}=0^{\circ}$, AMR is $2 \mathrm{~m}^{2} / \mathrm{kg}$

Results

Outline

(1) Introduction

(3) Analytical approximation

- Critical arguments and their frequencies
- p:q resonances
(3) Numerical simulation
- Numerical model
- Dynamical evolution in region near the high-order resonance
(4) Summary
- Results

Formation of the stochastic trajectories

The influences of the Poynting-Robertson effect

- Secular decrease in the semi-major axis, which, for a spherically symmetrical satellite with $\mathrm{AMR}=2 \mathrm{~m}^{2} / \mathrm{kg}$ near the 22:45 resonance region, equals approximately $0.5 \mathrm{~km} / \mathrm{year}$
- The effect weakens slightly, in resonance regions
- Objects pass through the regions of high-order resonances

The integrated autocorrelation function \mathcal{A}

$\mathcal{A} \rightarrow 1$

- constant time series
$\mathcal{A} \rightarrow 0.5$
- time series representing a uniformly sampled sine wave
\mathcal{A} tends to a finite value not far from 0.5
- other periodic and quasi-periodic time series
$\mathcal{A} \rightarrow 0$ with a speed proportional to the inverse of the exponential decay time
- chaotic orbits

Results

The integrated autocorrelation function \mathcal{A} for the semi-major axis a near the 22:45 resonance region

$a_{0}=26162 \mathrm{~km}, \mathrm{AMR}$ is $0.02 \mathrm{~m}^{2} / \mathrm{kg}$

$$
\begin{gathered}
\varphi_{0}=0^{\circ} \\
\varphi_{0}=90^{\circ} \\
\varphi_{0}=180^{\circ} \\
\varphi_{0}=270^{\circ}
\end{gathered}
$$

Results

Conclusion

- The Poynting-Robertson effect
- and secular perturbations of semi-major axis
- lead to the formation of weak stochastic trajectories in HEO region.

Thank you for your attention!

