◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

# Long time dynamical evolution of highly elliptical satellites orbits

### Eduard Kuznetsov Polina Zakharova

Astronomical Observatory Ural Federal University

Journees 2014 22–24 September 2014, Saint-Petersburg

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

# Outline



- 2 Analytical approximation
  - Critical arguments and their frequencies
  - p:q resonances
- 3 Numerical simulation
  - Numerical model
  - Dynamical evolution in region near the high-order resonance
- Summary
   Results

Numerical simulation

Summary 000000

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

# Astronomical Observatory of the Ural Federal University

### Orbital evolution of HEO objects is studied by

- both a positional observation method (SBG telescope)
- and theoretical methods (this work)
  - analytical
  - numerical

Numerical simulation

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

# Motivation

### Long-term dynamical evolution near HEO

- Safety of active satellites
- Secular perturbations of semi-major axes
  - Atmospheric drag
  - The Poynting–Robertson effect
- Long-term evolution of eccentricities and inclinations due to the Lidov–Kozai resonance
- Passage through high-order resonance zones
- Formation of stochastic trajectories

・ロト・日本・日本・日本・日本

# Methods

### Analytical

- Resonant semi-major axis values
- Critical arguments

### Numerical

- Positions and sizes of high-order resonance zones
- Estimation of semi-major axes secular perturbations
- Estimation of integrated autocorrelation function

Numerical simulation

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Critical arguments and their frequencies

# Outline



- 2 Analytical approximation
  - Critical arguments and their frequencies
  - p:q resonances

### 3 Numerical simulation

- Numerical model
- Dynamical evolution in region near the high-order resonance
- Summary
  - Results

Numerical simulation

Summary 000000

Critical arguments and their frequencies

### Critical arguments (Allan 1967)

$$\Phi_1 = p(M + \Omega + g) - q\omega t = \nu_1 t$$
  

$$\Phi_2 = p(M + g) + q(\Omega - \omega t) = \nu_2 t$$
  

$$\Phi_3 = pM + q(g + \Omega - \omega t) = \nu_3 t$$

### Frequencies of the critical arguments

$$\nu_{1} = p(n_{M} + n_{\Omega} + n_{g}) - q\omega$$
  

$$\nu_{2} = p(n_{M} + n_{g}) + q(n_{\Omega} - \omega)$$
  

$$\nu_{3} = pn_{M} + q(n_{g} + n_{\Omega} - \omega)$$

 $M, \Omega, g$  are angular elements,  $n_M, n_\Omega, n_g$  are mean motions,  $\omega$  is the angular velocity of the Earth p, q are integers

| In | tr | 0 | Ч |  | H | 0 | n |
|----|----|---|---|--|---|---|---|
|    |    |   |   |  |   |   |   |

Numerical simulation

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

#### p:q resonances

### Outline

### Introduction

- 2 Analytical approximation
  - Critical arguments and their frequencies
  - p:q resonances

### 3 Numerical simulation

- Numerical model
- Dynamical evolution in region near the high-order resonance

### 4 Summary

Results

| In | ÷ | ro | Ч | <br>0 | H | 0 | n |
|----|---|----|---|-------|---|---|---|
|    |   |    |   |       |   |   |   |

Numerical simulation

p:q resonances

# Types of resonances

#### *n*-resonance

### $\nu_1 \approx 0$

*p*:*q* resonance between the satellite's mean motion  $n_M$  and the Earth's angular velocity  $\omega$ 

#### *i*-resonance

### $\nu_2 pprox \mathbf{0}$

The position of the ascending node of the orbit repeats periodically in a rotating coordinate system

#### *e*-resonance

### $\nu_3 \approx 0$

The position of the line of apsides of the orbit repeats periodically in a rotating coordinate system

Numerical simulation

Summary 000000

p:q resonances

### 17 high-order resonance relations p:q



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

|  |  |  |  | luction |  |  |  |  |  |
|--|--|--|--|---------|--|--|--|--|--|
|  |  |  |  |         |  |  |  |  |  |
|  |  |  |  |         |  |  |  |  |  |

Numerical simulation

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

#### Numerical model

### Outline

### Introduction

- 2 Analytical approximation
  - Critical arguments and their frequencies
  - p:q resonances
- 3 Numerical simulation
  - Numerical model
  - Dynamical evolution in region near the high-order resonance

### 4 Summary

Results

Numerical simulation

Numerical model

# Numerical Model of Artificial Earth Satellites Motion (Bordovitsyna et al. 2007)

#### Software developer

 Research Institute of Applied Mathematics and Mechanics of Tomsk State University

### Integrator

• Everhart's method of the 19<sup>th</sup> order

#### Interval

24 years

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Numerical simulation

#### Numerical model

# The model of perturbing forces (Kuznetsov and Kudryavtsev 2009)

- the Earth's gravitational field (EGM96, harmonics up to the 27<sup>th</sup> order and degree inclusive)
- the attraction of the Moon and the Sun
- the tides in the Earth's body
- the direct radiation pressure, taking into account the shadow of the Earth (the reflection coefficient k = 1.44)
- the Poynting–Robertson effect
- the atmospheric drag

Numerical simulation

Numerical model

# Initial conditions

### High-elliptical orbits

- *a*<sub>0</sub> are consistent with resonant conditions arisen from the analytical approximation
- *e*<sub>0</sub> = 0.65
- Critical inclination  $i_0 = 63.4^\circ$
- $g_0 = 270^\circ$
- $\Omega_0 = 0^\circ$ , 90°, 180°, and 270°
- $\Omega_0$  coincide with initial values of solar angle  $\varphi_0 = \Omega_0 + g_0 = 270^\circ$ ,  $0^\circ$ ,  $90^\circ$ , and  $180^\circ$
- AMR = 0.02, 0.2, and 2 m<sup>2</sup>/kg

Numerical simulation

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Dynamical evolution in region near the high-order resonance

# Outline



- Numerical model
- Dynamical evolution in region near the high-order resonance
- 4 Summary
  - Results

Numerical simulation

Summary 000000

Dynamical evolution in region near the high-order resonance

### 22:45 resonance region



Numerical simulation

Summary 000000

Dynamical evolution in region near the high-order resonance

# Evolution of the semi-major axis *a* near the 22:45 resonance region

### $a_0 = 26162 \text{ km}, \varphi_0 = 0^\circ, \text{ AMR is } 0.02 \text{ m}^2/\text{kg}$



Numerical simulation

Summary

Dynamical evolution in region near the high-order resonance

# Evolution of the eccentricity e and argument of the pericenter g near the 22:45 resonance region



 $\varphi_0 = 0^{\circ}$  $\varphi_0 = 90^{\circ}$  $\varphi_0 = 180^{\circ}$  $\varphi_0 = 270^{\circ}$ 

▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ●

Numerical simulation

Summary 000000

Dynamical evolution in region near the high-order resonance

# Evolution of the inclination *i* near the 22:45 resonance region



 $arphi_{0} = 0^{\circ} \ arphi_{0} = 90^{\circ} \ arphi_{0} = 180^{\circ} \ arphi_{0} = 270^{\circ}$ 

・ 「 ・ モ ・ ・ 日 ・ ・ 日

Numerical simulation

Summary 000000

Dynamical evolution in region near the high-order resonance

# Evolution of the critical argument $\Phi_1$ near the 22:45 resonance region

### $a_0 = 26162$ km, $\varphi_0 = 90^\circ$ , AMR is 0.02 m<sup>2</sup>/kg



Numerical simulation

Summary 000000

Dynamical evolution in region near the high-order resonance

# Evolution of the critical argument $\Phi_2$ near the 22:45 resonance region

### $a_0 = 26162$ km, $\varphi_0 = 0^\circ$ , AMR is 0.02 m<sup>2</sup>/kg



200

Numerical simulation

Summary 000000

Dynamical evolution in region near the high-order resonance

# Evolution of the critical argument $\Phi_3$ near the 22:45 resonance region

### $a_0 = 26162 \text{ km}, \varphi_0 = 0^\circ, \text{ AMR} \text{ is } 0.02 \text{ m}^2/\text{kg}$



200

Numerical simulation

Summary 000000

Dynamical evolution in region near the high-order resonance

# Evolution of the semi-major axis *a* near the 22:45 resonance region

### $a_0 = 26162$ km, $\varphi_0 = 0^\circ$ , AMR is 2 m<sup>2</sup>/kg



Numerical simulation

Summary 000000

Dynamical evolution in region near the high-order resonance

# Evolution of the critical argument $\Phi_1$ near the 22:45 resonance region

### $a_0 = 26162 \text{ km}, \varphi_0 = 0^\circ, \text{ AMR} \text{ is } 2 \text{ m}^2/\text{kg}$



Numerical simulation

#### Results

### Outline

### Introduction

- 2 Analytical approximation
  - Critical arguments and their frequencies
  - p:q resonances
- 3 Numerical simulation
  - Numerical model
  - Dynamical evolution in region near the high-order resonance



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Numerical simulation

Summary 000000

(日) (日) (日) (日) (日) (日) (日)

Results

### Formation of the stochastic trajectories

### The influences of the Poynting–Robertson effect

- Secular decrease in the semi-major axis, which, for a spherically symmetrical satellite with AMR = 2 m<sup>2</sup>/kg near the 22:45 resonance region, equals approximately 0.5 km/year
- The effect weakens slightly, in resonance regions
- Objects pass through the regions of high-order resonances

Numerical simulation

Summary

Results

# The integrated autocorrelation function $\mathcal{A}$

### $\mathcal{A} ightarrow 1$

constant time series

### $\mathcal{A} ightarrow$ 0.5

time series representing a uniformly sampled sine wave

#### ${\cal A}$ tends to a finite value not far from 0.5

other periodic and quasi-periodic time series

 $\mathcal{A} \rightarrow 0$  with a speed proportional to the inverse of the exponential decay time

chaotic orbits

Numerical simulation

Summary 000000

#### Results

# The integrated autocorrelation function $\mathcal{A}$ for the semi-major axis *a* near the 22:45 resonance region



Numerical simulation

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Results



- The Poynting–Robertson effect
- and secular perturbations of semi-major axis
- lead to the formation of weak stochastic trajectories in HEO region.

Numerical simulation

(日) (日) (日) (日) (日) (日) (日)

Results

# Thank you for your attention!